自治体施設、オフィスビル、商業複合施設 電気設備・保全担当者様

非常照明用(直流電源装置)の蓄電池更新に 大きなコストがかかっていませんか?

受電設備の遮断器制御用

非常用照明用

CVCF/UPS用

||再生整 電源設備用蓄電池

再生利用により、 大幅なコスト低減

通常

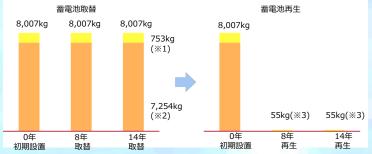
蓄電池処分費用 約20万円

蓄電池取替費用 約580万円

合計約600万円

再生すると・・

合計約300万円


【試算条件】

- 1. 対象蓄電池はMSE-300Ah×54セルとする。
- 2. オプション4年の能力維持保守保証付き
- 3. 処分費用は概算とする。
- ●新品のバッテリーを購入する場合に比べ、およそ半分の コストでバッテリーが復活します。

環境負荷の低減

- 排出廃棄物量の低減
- がよりませんなど重金属含有排水の排出低減 ライフサイクルコストの低減 エネルギー消費の低減

- 資源消費の低減
- ◆バッテリー再生による二酸化炭素(CO₂)削減効果

- ※1:バッテリー製造工程でのCO2排出量
- ※2: 材料製造に伴うCO2排出量 ※3: 計算根拠 再生には容量の5%程度の電流を24時間流す。 1000Ahx5%x2Vx24h = 2.4kWh CO2排出原単位421.83g-CO2/kWh (メーカー資料より) を使用すると CO2排出量は2.4kWh×54tル×421.83g-CO2/kWh = 55kg
- 【試算条件】
- 1.対象蓄電池はMSE-1000Ah×54セルとする。 2.蓄電池設置から14年間のCO2排出量を算出(初期設置に係わるCO2排出量も含む) 3.『蓄電池取替』は8年目と14年目に取替、『蓄電池再生』は8年目と14年目に再生を実施
- 4.取替、再生後の蓄電池の寿命は同等とする。

短時間放電試験による 精密点検

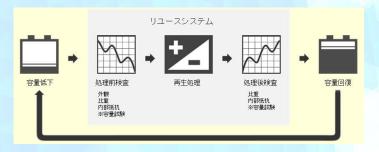
再牛整備 1年 保証 2年 期 間 オプションで 3年 保証延長可能 精密点検 4年 精密点検 5年 力維持保守 精密点検 6年 精密点検 7年

再生後の安心サポート体制

再生整備後は、年に1回精密点検を行い、能力を維持しま す。精密点検では、短時間放電により、各セルの容量検 査を実施します。JISで有効でないセル(容量80%以下) の危険性がある場合は、セル交換をいたします。

精密点検を実施

バッテリー代理店などで行われる、一般的な蓄電池点検 は、セル電圧及び内部抵抗や比重値による目安値で判断 をする簡易的なものです。再生後も各セルをきちんと点 検する、安心のサポート体制でお客様のバッテリーを保 守いたします。

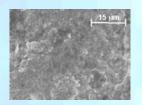

会館・オフィスビル・複合施設系施設の主な実績

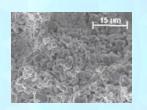
	名	称		用	途	電池タイプ
石川	美術館・ホ-	ール・飲食物	夏合施設	非常照明用		MSE
石川	ドーム型複合	合施設		非常照明用		HS→MSE
埼玉	国立系会館			非常照明用		MSE
東京	テレビスタ	ジオ		非常照明用	・発電機始動用	MSE
大阪	オフィスビル	レ		非常用照明		MSE
名古屋	市民センタ-	_		非常用照明		MSE
石川	市庁舎			CVCF/非常月	用照明	HSE/MSE

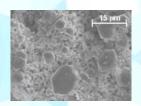
バッテリーは再生可能

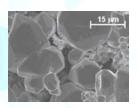
特許技術BRSは劣化したバッテリーを再生し、 再利用可能な状態まで回復させる日本初の技術です

- 鉛蓄電池において結晶化した硫酸鉛、サルフェーションを再イオン化させ、「硫酸」と「鉛」の活性を取り戻し良好な状態に回復させます。
- 再生の作業は電気的処理になり、添加物の追加や極板等の交換をおこなうものではありません。

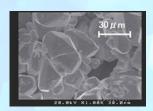



バッテリー再生の特許技術BRS 特許番号

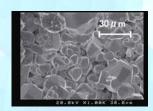

鉛蓄電池の負極面の走査型電子顕微鏡による観察例


1 新電池の初回放電

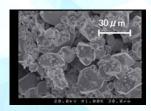
2 20サイクル放電後



3 放電後2ヶ月放置



4 劣化電池


再生に伴うバッテリーの形状変化(鉛蓄電池の場合)

1 再生前の劣化電池

2 再生処理を1時間おこなったもの

3 再生処理を5時間おこなったもの

4 再生処理を 15時間おこなったもの

使用済みのバッテリーを 有価物として買い取り致します!

対象バッテリー

- ●フォークリフト
- ●非常用蓄電池(鉛)

マニュフェスト不要! 産業廃棄物とせずに 処分できます

九電テクノシステムズ株式会社 Kyuden Technosystems Corporation

本店 〒815-0031

福岡県福岡市南区清水4-19-18

TEL 092-551-1776 FAX 092-511-8693